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Abstract. An analysis of the similarity solution of the linear, homogeneous, fragmentation
equation is given for a general volume-conserving daughter-fragment distribution. For the special
case of a polynomial daughter-distribution of degreep, an exact, basic similarity solution for
the time evolution of the particle-volume distribution is derived. The solution is proportional
to theGp+1,0

p,p+1 Meijer G-function which may be represented as a linear combination ofpFp
generalized hypergeometric functions. The properties of generalized hypergeometric functions
andG-functions are given in the special function literature and include the continuation of the
solution to large values of the similarity variable which is given here for special cases.

1. Introduction

In the continuous, linear theory of the fragmentation (or splitting) of particles the actual
discreteness of the particles is ignored and it is assumed that the particles fragment by some
perturbation other than a collision with another particle of the same kind. Furthermore, it
is assumed that there is no recombination of the particles, that the rate of fragmentation of
a particle of volumex is proportional to the concentration of particles of volumex and that
changes in the particle-volume distribution are brought about only by fragmentation. Other
effects that could change the distribution, such as spatial diffusion caused by concentration
gradients or convective transport, are assumed to be negligible. These assumptions lead
to a linear differential–integral equation called the fragmentation equation that governs the
evolution in time of the distribution of the particle volumes in a system of fragmenting of
particles.

Here we study the solution of the fragmentation equation for a homogeneous
fragmentation kernel and boundary conditions on the particle volumes that assure that the
total volume of particles remains constant as the fragmentation proceeds. The kinetics of
fragmentation with volume change is also of interest and has been studied by Fillipov [1],
McGrady and Ziff [2], Edwardset al [3], Cai et al [4], Huanget al [5], Ernst and Szamel
[6] and Said and El-Wakil [7], but in this investigation volume is conserved. The studies
that are most relevant to the analysis presented here are those by Fillipov [1], Ziff and
McGrady [8, 9], Peterson [10], Cheng and Redner [11, 12], Huanget al [5], Ziff [13] and
Baumannet al [14]. Additional references, especially to earlier work, are given in papers by
Ziff [13] and Bak and Bak [15]. Possible applications of the theory to polymer degradation,
droplet and aggregate breakage, combustion and other physical processes have been pointed
out in [5, 8–12]. A correspondence of the linear fragmentation theory to a one-dimensional
Markov process has also been shown by Fillipov [1].

The studies referred to above have been on large and small particle-volume limits, on
the long-time limits of the particle distribution and the moments of the particle distribution
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and on the construction of exact solutions of the fragmentation equation. This investigation
continues on these same problems in the context of the similarity form of solution for a
fragmentation probability that is homogeneous in the particle volume. In the theory of
coagulation [16, 17], and also in the theory of fragmentation, a similarity solution has the
same invariances as the governing equations. An advantage in finding the form of the
similarity solution is that it separates the independent variables and reduces the problem
to the solution of separated ordinary differential equations. The equations that govern the
kinetics of particle coagulation and fragmentation are invariant under time translations and,
if the kernels that give the probability of coagulation and fragmentation are homogeneous
functions of the particle volume, these equations are also invariant under a group of scale
transformations of the particle volume and time. Friedlander and Wang [18], guided by
experimental results and intuition, have given an ansatz for the form of the similarity solution
for the coagulation equation and, even though the coagulation equation is nonlinear and the
fragmentation equation is linear, since the invariances of the coagulation and fragmentation
equations are the same, the Friedlander ansatz also brings about the separation of variables
in the fragmentation theory.

Although the general form of the similarity solutions for coagulation and fragmentation
is exactly the same, the solutions are of course different. For coagulation the similarity
solution is a solution of a nonlinear equation that is distinct from other solutions that are
not scale invariant. Special importance is attached to the similarity solution because, in
addition to the separation of variables that it brings about, in the case of the constant
coagulation kernel [17–19] (and probably for other kernels too [17–21]), it is the limit to
which solutions with different initial values approach after a sufficiently long time.

The situation is partly the same for fragmentation where, as shown by Fillipov [1] and
Ziff and McGrady [8], solutions with different initial values tend to the limit of a similarity
solution. However, an essential difference in the two theories is that for fragmentation,
because of the linearity of the theory, one can add solutions to obtain more general solutions.
In particular, one can add basic similarity solutions or add solutions for the monodisperse
initial distribution where the latter method is a way to form the general solution of the initial
value problem.

We commented above on coagulation in order to bring in the origin of the Friedlander
ansatz, but the analysis here is only on fragmentation. First, rather than use an ansatz, the
Friedlander form of the similarity solution is derived from an invariance argument. The
similarity form is derived by constructing a solution that has the same time translation
and scale invariance as the equation itself. Then, for a general, homogeneous kernel, we
study the basic similarity solution and the moments of the solution. The large and small
mean-particle-volume limits that have been given by Cheng and Redner [11, 12] are derived
here as the limits of the basic solution. Furthermore, continuing the studies of Fillipov [1],
Ziff and McGrady [8, 9], Peterson [10], Ziff [13], Baumannet al [14] and Said and El-
Wakil [7] we consider the problem of finding exact similarity solutions of the fragmentation
equation that hold initially and for large times as well. Assuming a polynomial class of
fragmentation kernel, a basic similarity solution is derived by the Mellin transformation that
is a generalization of the solutions that have previously been given. The solution shows
the existence of solutions in a way that is different than the proof given by Fillipov [1]
and shows explicitly conditions on the fragmentation parameters that are sufficient for the
existence of the solution. The solution is in agreement with the general results on small
and large limits of the similarity variable given by Cheng and Redner [11, 12]. Finally,
solutions for special cases of the polynomial kernel are worked out that provide examples
of the general analysis and a comparison with known exact solutions.
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2. The fragmentation equation and the Mellin transform

According to Fillipov [1], Ziff and McGrady [8, 9], Peterson [10], Cheng and Redner [11, 12]
and Huanget al [5], the equation governing the time evolution of the volume distribution
of fragmenting particles is given by

∂n(x, t)

∂t
= −c̃αxαn(x, t)+ c̃α

∫ ∞
x

yα−1b(x/y)n(y, t)dy (2.1)

which is a special case of the master equation of statistical physics as given, for example,
by Reichl [22]. In (2.1) we retain the dimensions of the physical quantities wherex is
the volume of a particle with the dimension of length cubed,t is time andn(x, t) is the
uniform spatial concentration of particles per unit particle volume with dimensionx−2.
The fragmentation equation accounts for the net rate at which the number concentration of
particles of volumex increases. In the first term on the right-hand side of (2.1) we assume
that the rate at which the concentration of particles of volumex decreases by fragmentation
is given by c̃αxαn(x, t), where throughout the analysis we suppose thatα > 0, which
excludes the shattering kind of fragmentation [1, 2, 5, 6]. The second term is the rate at
which the concentration of particles of volumex increases due to fragmentation of particles
with volumes larger thanx and thus the integration over all particle volumes greater thanx.
The constant̃cα has the dimensions ofx−αt−1 and is usually absorbed in the time variable
but we show it explicitly since it has physical significance. The functionb(x/y) determines
the number of fragments per fragmentation and ifb(x/y) is homogeneous of degree zero,
as we will assume, then the right-hand side of the fragmentation equation is homogeneous
of degreeα. This important assumption makes the fragmentation equation invariant under
scale transformations.

A recursion equation for the time rate of change of the moments of the particle-volume
distribution is obtained by taking moments of (2.1). However, before taking moments we
write the equation in another form by substituting the identity

b(r) = 1

r

d

dr

∫ r

0
sb(s) ds (2.2)

into (2.1) with the result

∂n(x, t)

∂t
= −c̃α(1− B(1))xαn(x, t)+ c̃αx−1 ∂

∂x

[
x2
∫ ∞
x

yα−1B

(
x

y

)
n(y, t)dy

]
(2.3)

where

B

(
x

y

)
= B(r) = r−2

∫ r

0
sb(s) ds (2.4)

is dimensionless and homogeneous of degree zero andB(1) = ∫ 1
0 rb(r) dr. Multiplication

of (2.3) byxk and integration overx yields the moment equation

dMk(t)

dt
= −c̃α[(k − 1)Bk + 1− B(1)]Mk+α(t)− c̃α lim

x→0
xk+1

∫ ∞
x

yα−1B

(
x

y

)
n(y, t)dy

(2.5)

where

Mk(t) =
∫ ∞

0
xkn(x, t)dx (2.6)
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are the moments ofn(x, t), k is real in the rangek > 0 andBk are the moments ofB(r)
given by

Bk =
∫ 1

0
rkB(r) dr (2.7)

(k − 1)Bk = B(1)−
∫ 1

0
rkb(r) dr. (2.8)

The symbol and the definition for theB-moments are the same as those used by Ziff [13]
except the index in (2.7) is shifted by two. The analysis will be restricted to conditions for
which the moments ofn(x, t) are finite. In particular, the zeroth moment, which is the total
number of particles per unit spatial volume, is assumed to be initially finite and remain so
for finite times.

For the first moment ofn(x, t) we have

dV (t)

dt
= −c̃α(1− B(1))M1+α(t)− c̃α lim

x→0
x2
∫ ∞
x

yα−1B

(
x

y

)
n(y, t)dy (2.9)

where the volume fractionV , called volume for short, is the total volume of the fragmenting
particles per unit spatial volume. It is dimensionless and has a maximum value of unity.
The valueV = 1 represents the case where the spatial volume is completely filled with the
fragmenting material. Since distributions with zero volume will not be considered, we have
0 < V 6 1. If B(1) = ∫ 1

0 rb(r) dr = 1 and the above boundary term vanishes then the
volume of the distribution is constant.

As clarified by Ernst and Szamel [6], if the boundary term in (2.9) does not vanish then,
even if the kernel conditionB(1) = 1 would be satisfied, the volume is not constant. For
α < 0, Fillipov [1] and McGrady and Ziff [2] have constructed solutions called shattering
solutions whereB(1) = 1 but the boundary term does not vanish so the total volume is
not conserved. For example, substituting an exact solution forα < 0 given by McGrady
and Ziff [2, equation (11)] into the boundary term in (2.9) gives the same rate of change of
the volume that they have calculated directly by taking the first moment of the shattering
solution.

If the boundary term vanishes fork > 0 and if in additionB(1) = 1, as we henceforth
assume, then the moments satisfy the differential recursion relation,

dMk(t)

dt
= −c̃α(k − 1)BkMk+α(t) (2.10)

which is the Mellin transform of the fragmentation equation with the index shifted by one.
For the zeroth moment (2.10) becomes

dN(t)

dt
= c̃α(Ñ − 1)Mα(t) (2.11)

whereN(t) = M0(t) is the total particle number density, which for short we call particle
number and

Ñ = B0+ 1=
∫ 1

0
b(r) dr (2.12)

is the number of fragments per fragmentation event. To see thatÑ is given by (2.12)
one notes by inspection of (2.1) thatc̃αMα(t) is the rate at which particles fragment and
therefore the rate at which fragments are created is given byÑ c̃αMα(t). Then, according
to (2.1) withk = 0, the difference, given by

B0c̃αMα(t) = Ñ c̃αMα(t)− c̃αMα(t)
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is the net rate of increase of fragments. It follows that the number of fragments per event, or
fragment number as we will call it, is given by (2.12), where we used (2.8). The number of
fragments should be finite, so it is necessary that the daughter distributionb(r) be integrable.
In order that the particle number increases with time one sees from (2.11) that it is necessary
thatB0 > 0 (or Ñ > 1) and in order to obtain two or more fragments at each fragmentation
it is evident from (2.12) thatB0 > 1 (or Ñ > 2). In summary, if the boundary term in
(2.9) vanishes, ifB(1) = 1 and 16 B0 < ∞, then one may interpret the solutionn(x, t)
of (2.1) as the evolution in time of a continuous distribution of the volumes of fragmenting
particles, where the total particle volume is constant and two or finitely more fragments are
formed at each fragmentation.

Taking the characteristic volume to be the initial mean-particle volume,ν = V/N0

whereN0 is the initial particle number, we define a dimensionless particle volumex̄ = x/ν.
We take the characteristic time to be(c̃ανα)−1 where, as is evident from (2.1),̃cανα is
the frequency of fragmentation for a particle with mean volumeν. A dimensionless time
is defined byς = c̃αναt and then, in terms of dimensionless variables, the fragmentation
equation takes the form

∂n(x̄, ς)

∂ς
= −x̄αn(x̄, ς)+

∫ ∞
x̄

ȳα−1b

(
x̄

ȳ

)
n(ȳ, ς)dȳ

which is often taken as the starting point of analysis. However, we want to display the
physical variables and parameters in the solutions so we will work with (2.1).

3. The similarity solution

The Friedlander ansatz [17–21] gives the desired similarity function form; however, as
pointed out by Lushnikov [23], it is not necessary to use the ansatz, rather one may use
an invariance argument to derive the function form. Such an argument is given below to
show the uniqueness of the Friedlander ansatz and to show the role played by the invariant
total-particle volume.

Taking this approach we investigate the transformation of the fragmentation equation
under a scale transformation followed by a time translation, namely the transformations

t = r−α(t∗ + t0) x = rx∗ (3.1)

wherex∗ andt∗ are the new variables,r is a positive real number andt0 is real. Substitution
of the transformation (3.1) into the fragmentation equation (2.1) and relabelling the variables
yields the transformed equation.

∂nr(x, t)

∂t
= −c̃αxαnr(x, t)+ c̃α

∫ ∞
x

yα−1b

(
x

y

)
nr(y, t)dy

where the transformed distributionnr(x, t) is given by

nr(x, t) = r2n[rx, r−α(t + t0)]. (3.2)

We see by inspection that the transformed equation is identical to the original equation.
The factorr2 makes (3.2) a volume-preserving transformation. To see this we take the

first moment of (3.2), which gives

V (r) =
∫ ∞

0
xnr(x, t)dx =

∫ ∞
0
yn[y, r−α(t + t0)] dy = V (3.3)

where in the last step the time independence of the first moment was used. Thus, if volume
is conserved in the fragmentation process the volume of any solutionn(x, t) is invariant
under the transformation (3.2).
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Since the equation satisfied bynr(x, t) is exactly the same as the original equation it
follows that if n(x, t) is a solution of the fragmentation equation thennr(x, t) is another,
generally different, solution with the same volume. Consequently, the transformation (3.2)
provides a way to generate a one-parameter family of solutions from a given solution,
where the members of the family all have the same volume, but the other moments may be
changed by the transformation. However, we are not interested in generating solutions in
this way, rather we seek a special solution, sayn∗(x, t), where all the moments are invariant
under the group of scale transformations, i.e. where the solution itself is invariant under the
scale transformations. Such scale invariant distributions that also satisfy the fragmentation
equation for timest > 0 are called similarity solutions or sometimes self-preserving or
self-similar solutions [24].

To derive the function form of the similarity solution one notes that ifn∗(x, t) is invariant
under the scale transformation (3.1) it is independent ofr and thus

1

r

dn∗(x, t)
dr

= 2n(u,w)+ u∂n(u,w)
∂u

− αw∂n(u,w)
∂w

= 0 (3.4)

whereu = rx, w = r−α(t + t0). By the method of characteristics [25] it can be shown that
the general solution of (3.4) is

n∗(x, t) = A1w
2/αφ(A2uw

1/α) (3.5)

whereφ, referred to here as the reduced distribution, is an arbitrary function andA1, A2

and t0 at this point are undetermined constants. Sincer is arbitrary we taker = 1 and
obtain

n∗(x, t) = A1(t + t0)2/αφ[A2x(t + t0)1/α]. (3.6)

To determine the constants we take the zeroth and first moments of (3.6) which gives

N∗ = (A1/A2)µ0(t + t0)1/α V = (A1/A
2
2)µ1 (3.7)

where

µk =
∫ ∞

0
zkφ(z) dz (3.8)

will be called the reduced moments. EliminatingA1, A2 and t0 in (3.6) yields the invariant
solution in the form

n∗(x, t) = µ1N
∗2

µ2
0V

φ

(
µ1N

∗x
µ0V

)
. (3.9)

Usually only one normalization condition can be imposed on a solution of a linear
homogeneous equation but here it is possible to impose two. It is not necessary but for
simplicity we impose the normalization conditionsµ0 = 1 andµ1 = 1. If both conditions
are satisfied then

n∗(x, t) = N∗2(t)
V

φ(z) z = N∗(t)x
V

(3.10)

where the dimensionless similarity variablez is the ratio of the volume of a particle to the
instantaneous mean particle volumeV/N∗(t). The form of the distribution (3.10) was given
as an ansatz by Friedlander and Wang [18] for the homogeneous coagulation equation. The
same function form is obtained here for fragmentation because the coagulation equation
and the fragmentation equation both have the same translation and scaling invariances. The
function(V/x2)8(z) is also a solution of (3.4); however, since8(z) = z2φ(z), this is just a
different way of writing the Friedlander form of the solution and is not another independent
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function. We note that in the above derivation the volume was assumed to be constant but
with minor modification the derivation would apply to the volume-changing fragmentation
kinetics considered by Fillipov [1], Edwardset al [3], Cai et al [4] and Huanget al [5].

As shown below, substitution of the Friedlander ansatz into the fragmentation equation
separates the variablesz and t and shows thatφ(z) satisfies an ordinary linear differential–
integral equation or, alternatively, shows thatφ(z) satisfies a linear integral equation. The
Friedlander ansatz has been used by Fillipov [1] (there called a stationary solution), Peterson
[10], Ziff and McGrady [8, 9], Cheng and Redner [11, 12] and Ziff [13]. We call a solution
of the fragmentation equation that has the Friedlander form (3.10) a basic similarity solution.

Settingt0 = 0 in (3.6) yields

n∗(x, t) ≈ A1t
2/αφ(A2xt

1/α) (3.11)

which is a limiting form of the basic similarity solution. This form of the distribution has
been used in a number of investigations where it is assumed that (3.11) is the continuation
to long times of a solution of the initial value problem for the fragmentation equation.
However, we will work with the Friedlander form (3.10) so that we may consider the initial
value problem and investigate the questions of existence and the continuation of solutions
to long times.

4. The time dependence of the moments of the similarity solution

It has been shown by Peterson [10] that the time dependence of the moments of a basic
similarity solution can be derived up to numerical values of constants without knowing
the reduced distributionφ(z). The derivation is repeated here in order to introduce some
notation for later use and to identify a characteristic time. Substitution of (3.10) into (2.6)
gives

M∗k (t) = µk
V k

N∗(k−1)(t)
(4.1)

and with (4.1) and (2.10) we have

dM∗k (t)
dt

= −c̃α(k − 1)Bkµk+α
V (k+α)

N∗(k+α−1)(t)
. (4.2)

For k = 0 the integral of (4.2) gives the time dependence of the particle number as

N∗(t)
N0
= (1+ βας)1/α (4.3)

whereN0 is the initial particle number. For conciseness we have used the dimensionless
time ς = c̃αναt introduced above and we have identified the important parameter

βα = αµαB0 = αµα(Ñ − 1). (4.4)

Now we see the similarity variable is given by

z = N∗(t)x
V

= x

ν
(1+ βας)1/α = x

ν(t)
(4.5)

where

ν(t) = V

N∗(t)
= ν

(1+ βας)1/α
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is the instantaneous mean particle volume. With (4.3), the integral of (4.2) yields the time
dependence of the other moments as

M∗k (t) = M∗k (0)(1+ βας)−(k−1)/α (4.6)

where, in accordance with (4.1),M∗k (0) = N0µkν
k are the initial values of the moments of

the similarity solution. If the reduced distributionφ(z) exists, then (4.6) gives the similarity
solution of the moment equation fort > 0 up to the numerical values ofβαc̃ανα andM∗k (0).
We note that a solution of the form (4.6) for the moments of the similarity solution of the
coagulation equation can be derived in the same way.

We see from (4.6) that moments of degree 06 k < 1 increase and the moments of
degreek > 1 decrease in time. The volume is an invariant of the kinetics and thusk = 1
is the separating value for increasing and decreasing moments. This is a general feature of
the volume-conserving kinetics, i.e. whatever the fragmentation kernel, if the coefficients
Bk are positive the moments less than the first moment increase with time and the moments
greater than the first moment decrease with time.

It follows from (4.6) that for long times

M∗k (t) = M∗k (0)(βας)−(k−1)/α

(
1− (k − 1)

α
(βας)−1+ · · ·

)
(4.7)

where the series converges ifβας > 1. Thus equation (4.7) gives the continuation of the
moments of the similarity solution to long times. From (4.6) and the definition ofς we see
that the characteristic time for thekth moment to approach the long-time limit is

τ ∗k =
|k − 1|
αβαc̃ανα

. (4.8)

With the aid of the definition ofM∗k (0) we have the limit

lim
t→∞M

∗
k (t) = Vµk(βαc̃αt)−(k−1)/α. (4.9)

One sees from (4.8) that for a small initial mean volume it can take a long time for the
similarity distribution to reach the limit (4.9). The above results hold for any homogeneous
kernel such that the reduced distribution with finite moments exists.

5. The reduced equation and the small and large-z behaviour of the reduced
distribution

Up to this point we have proceeded without considering the existence or the construction
of the reduced distribution. To reduce the fragmentation equation to an ordinary equation
satisfied byφ(z) we substitute (3.10) into (2.3), useB(1) = 1 and use (4.2) withk = 0 for
dN∗/dt and (4.1) forM∗α(t). Because of the homogeneity inx the explicit time dependence
carried byN∗(t) factors out and the resulting equation is

B0µα
d

dz
(z2φ(z)) = d

dz

(
z2
∫ ∞
z

B

(
z

w

)
wα−1φ(w) dw

)
. (5.1)

Then by inspection one sees that

φ(z) = α

βα

∫ ∞
z

B

(
z

w

)
wα−1φ(w) dw α > 0 (5.2)

is a solution of (5.1), where all the quantities in the equation are dimensionless and the
parameterβ = (αµαB0)

1/α now shows up as a separation constant. We call (5.2) the
reduced equation. This integral form of the reduced equation has been studied by Fillipov
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[1] and Ziff [13]. We note thatβ is not arbitrary since, as we will see, it is determined by
the kernel parameters.

One can absorb the parameterβ and the degree of homogeneity into the similarity
variable and work with the scaled similarity variableη = zα/βα = (x̄α/βα)(1+ βας) as
the independent variable. Then, carrying out the differentiation in (5.1) and usingη as the
independent variable, we obtain

η
dφ̄(η)

dη
+ 2

α
φ̄(η) = −ηφ̄(η)+ 1

α

∫ ∞
η

b

(
η1/α

ξ1/α

)
φ̄(ξ) dξ

whereφ̄(η) = φ(z), which is the other form of the reduced equation that has been studied.
We will work with the integral form of the reduced equation although we do not see an
essential advantage over the derivative form. Also, at this point we will usez as the
independent variable since we want to see explicitly howβ appears in the solutions. Later
we will use the scaled similarity variableη to write the solutions of the reduced equation.

5.1. The small-z limit

From the definition of the similarity variable one sees that smallz means that the physical
particle volumex is small compared to the instantaneous mean volume of the distribution.
To obtain the small-z limit we multiply the reduced equation (5.2) byz−γ , take the limit
inside the integral and assume that limr→0[r−γ B(r)] = constant. Then,

lim
z→0

z−γ φ(z) = α

βα

∫ ∞
0

[lim
r→0

r−γ B(r)]wα−1−γ φ(w) dw

= α

βα
[lim
r→0

r−γ B(r)]µα−1−γ

and thus

lim
z→0

φ(z) = constantµα−1−γ zγ . (5.3)

This is the small-z limit derived by Cheng and Redner [11, 12]. It follows from (5.3) that
it is necessary thatγ > −1 in order to satisfy the normalization conditionµ0 = 1.

5.2. The large-z limit

Large z means that the particle volumex is large compared with the instantaneous mean
volume. To investigate the large-z limit we differentiate inside the integral in (5.2) and
obtain

d2φ(z)

dz2
= − α

βα

[
zα−1 dφ(z)

dz
+ (α − 1+ B ′(1))zα−2φ(z)+

∫ ∞
z

B ′′
(
z

w

)
wα−3φ(w) dw

]
(5.4)

whereB ′ = dB/dr, B ′′ = d2B/dr2. The solution for largez has the form

lim
z→∞φ(z) = constantzB

′(1) exp

(
− zα

βα

){
1+O

[(
z

β

)−α]}
(5.5)

where, from the definition ofB(r), we haveB ′(1) = b(1) − 2. This is the large-z limit
derived in another way by Cheng and Redner [11, 12]. In section 6 we will confirm (5.5)
by continuing the small-z solution of the reduced equation to largez.
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6. Solution of the reduced moment equation and the reduced fragmentation equation

Taking moments (the Mellin transformation) of (5.2) yields

µk = α

βα

∫ ∞
z=0

zkdz
∫ ∞
w=z

B
( z
w

)
wα−1φ(w) dw

whereµk are the moments defined by (3.8). Changing the way we integrate overw andz
we have

µk = α

βα

∫ ∞
w=0

dw
∫ w

z=0
zkB

( z
w

)
wα−1φ(w) dz.

The change of variabler = z/w gives

µk = α

βα

∫ ∞
w=0

dw
∫ 1

0
dr rkB(r)wk+αφ(w)

and thus

µk+α = βα

αBk
µk (6.1)

where we used (2.7) forBk. Taking moments of the differential form of the reduced
equation also gives the recursion equation (6.1), as it should. We call (6.1) the reduced
moment equation. Since theµ-moments should be positive it follows thatBk should also
be positive.

Iteration of (6.1) in steps ofα yields the solution

µnα = βnα

αnB0Bα · · ·B(n−1)α
. (6.2)

The solution of the reduced equation (5.2) is given by the inverse Mellin transform of (6.2),
i.e. by

φ(z) = 1

2π i

∫
Br

z−k−1µk dk (6.3)

whereBr is the Bromwich path (from−i∞ to i∞ to the right of all singularities ofµk)
andµk is the solution (6.2) continued to the Bromwich path in the complexk-plane.

6.1. The daughter-fragment distribution

To obtain explicit solutions of the reduced equation we choose a specific form for the
daughter-fragment distribution, namely

b(r) = rγ (b0+ b1r + · · · + bprp) (6.4)

wherep = 0, 1, . . . is an integer,γ and the coefficientsb0, b1, . . . , bp are real and 06 r 6 1.
For brevity, we callb(r) the polynomial daughter distribution and forp = 0 we call (6.4)
the power-law distribution. With (2.4) and (6.4) we have

B(r) = rγ
(

b0

γ + 2
+ b1

γ + 3
r + · · · + bp

γ + 2+ pr
p

)
(6.5)

where, as noted above, the constraintB(1) = 1 is necessary for the conservation of volume.
With (6.5) and (2.7), the moments ofB(r) are

Bk = b0

(γ + 2)(k + γ + 1)
+ b1

(γ + 3)(k + γ + 2)
+ · · · + bp

(γ + 2+ p)(k + γ + 1+ p)
(6.6)
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which may be written in the form

Bk = (k + k1)(k + k2) · · · (k + kp)
(k + γ + 1)(k + γ + 2) · · · (k + γ + 1+ p) (6.7)

where−k1,−k2, . . . ,−kp are the zeros ofBk. We suppose that the zeros are negative
so thatk1, k2, . . . , kp are positive and thusBk will be positive for k > 0. Within certain
constraints, which will be pointed out below, one is free to choose the numerical values of
the degree of homogeneityα, the powerγ of the leading term ofb(r) and the zeros ofBk.
Thus, not counting the fragmentation rate constantc̃α, the theory with a polynomial daughter
distribution of degreep is characterized by the numerical values ofp + 2 parameters.

If one regardsγ, k1, k2, . . . , kp as independent the coefficientsb0, b1, . . . , bp of the
daughter distribution are determined as the solutions ofBk = 0, whereBk is given by (6.6).
Alternatively if one supposesb0, b1, . . . , bp are independent then−k1,−k2, . . . ,−kp are
solutions ofBk = 0. The zeros ofBk are determined as solutions of

b0

(γ + 2)(k + γ + 1)
+ b1

(γ + 3)(k + γ + 2)
+ · · · + bp

(γ + 2+ p)(k + γ + 1+ p) = 0

(6.8)

or alternatively, according to (2.8), as solutions of

b0

(k + γ + 1)
+ b1

(k + γ + 2)
+ · · · + bp

(k + γ + 1+ p) = 1. (6.9)

6.2. The solutionµk of the reduced moment equation

For Bk given by (6.7) we have

B0Bα · · ·B(n−1)α = (k1/α)n(k2/α)n · · · (kp/α)n
αn((γ + 1)/α)n((γ + 2)/α)n · · · ((γ + 1+ p)/α)n (6.10)

where (ρ)n = ρ(ρ + 1) · · · (ρ + n − 1) is the Pochhammer factorial. Using(ρ)n =
0(ρ + n)/0(ρ) in (6.10), where0 is the gamma function, we express the solution of
the reduced moment equation in terms of gamma functions as

µk = βk[0((k + γ + 1)/α)0((k + γ + 2)/α) · · ·0((k + γ + 1+ p)/α)0(k1/α)

×0(k2/α) · · ·0(kp/α)][0((γ + 1)/α)0((γ + 2)/α) · · ·0((γ + 1+ p)/α)
×0((k + k1)/α)0((k + k2)/α) · · ·0((k + kp)/α)]−1. (6.11)

Taking k = 1 in (6.11) and recalling thatµ1 = 1 we obtain

β = 0((γ + 1)/α)0((1+ k1)/α)0((1+ k2)/α) · · ·0((1+ kp)/α)
0((γ + 2+ p)/α)0(k1/α)0(k2/α) · · ·0(kp/α) (6.12)

and thus β is determined uniquely by the independent fragmentation parameters
α, γ, k1, k2, . . . , kp.

6.3. The solutionφ of the reduced fragmentation equation

The reduced distribution is obtained by taking the Mellin inverse of the solution (6.11) of
the reduced moment equation. Substitution of (6.11) into (6.3) gives

φ̄(η) = Dp(α, γ )α
β
ηγ/αG

p+1,0
p,p+1

×
(
k1− γ − 1

α
,
k2− γ − 1

α
, . . . ,

kp − γ − 1

α
; 0, 1

α
,

2

α
, . . . ,

p

α
; η
)

(6.13)
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where we have introduced the scaled similarity variableη = zα/βα, φ̄(η) = φ(z),

Dp(α, γ ) = 0(k1/α)0(k2/α) · · ·0(kp/α)
0((γ + 1)/α)0((γ + 2)/α) · · ·0((γ + 1+ p)/α) (6.14)

and, according to the definition given by Luke [26],

G
p+1,0
p,p+1

(
k1− γ − 1

α
,
k2− γ − 1

α
, . . . ,

kp − γ − 1

α
; 0, 1

α
,

2

α
, . . . ,

p

α
; η
)

= 1

2π i

∫ σ+i∞

σ−i∞
dk′η−k

′
[0(k′)0(k′ + (1/α)) · · ·0(k′ + (p/α))]

×[0(k′ + (k1− γ − 1)/α)0(k′ + (k2− γ − 1)/α) · · ·
· · ·0(k′ + (kp − γ − 1)/α)]−1 (6.15)

with σ > 0 is a MeijerG-function [27]. TheG-function is a fundamental transcendent
in the theory of generalized hypergeometric functions [26]. In the argument of the
G-function it is convenient to use the short notation(kp − γ − 1)/α to stand for
(k1− γ − 1)/α, (k2− γ − 1)/α, . . . , (kp − γ − 1)/α andp/α for 1/α, 2/α, . . . , p/α. Thus
we will write

G
p+1,0
p,p+1

(
k1− γ − 1

α
,
k2− γ − 1

α
, . . . ,

kp − γ − 1

α
; 0, 1

α
,

2

α
, . . . ,

p

α
; η
)

= Gp+1,0
p,p+1

(
kp − γ − 1

α
; 0, p

α
; η
)
.

We will show two representations ofGp+1,0
p,p+1(η). The first is a sum ofpFp generalized

hypergeometric series and the second is a multiple integral over real variables.

6.4. TheG-function as a sum ofpFp generalized hypergeometric series

We can carry out the inversion (6.15) by summing over the residues of the poles of the
gamma functions. We first show the details for the special case ofp = 1, which we call the
linear daughter distribution, and then give the result for the polynomial of degreep. For
p = 1 the definition (6.15) gives

G
2,0
1,2

(
k1− γ − 1

α
; 0, 1

α
; η
)
= 1

2π i

∫ σ+i∞

σ−i∞
dk′ η−k

′ 0(k′)0(k′ + (1/α))
0(k′ + (k1− γ − 1)/α)

. (6.16)

If 1/α is not an integer there are simple poles of the integrand in (6.16) atk′ =
0,−1,−2, . . .; k′ = −1/α,−2/α,−3/α, . . .. Summing over the residues of the poles
we obtain

G
2,0
1.2

(
k1− γ − 1

α
; 0, 1

α
; η
)
=
∞∑
n=0

0(−n+ (1/α))
0(−n+ (k1− γ − 1)/α)

(−1)n

n!
ηn

+
∞∑
n=0

0(−n− (1/α))
0(−n+ (k1− γ − 2)/α)

(−1)n

n!
η1/α+n

= 0(1/α)

0((k1− γ − 1)/α)

∞∑
n=0

(1− (k1− γ − 1)/α)n
((α − 1)/α)n

(−1)n

n!
ηn

+ 0(−1/α)

0((k1− γ − 2)/α)
η1/α

∞∑
n=0

(1− (k1− γ − 2)/α)n
((α + 1)/α)n

(−1)n

n!
ηn
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= 0(1/α)

0((k1− γ − 1)/α)
1F1

(
1− k1− γ − 1

α
; 1− 1

α
;−η

)
+ 0(−1/α)

0((k1− γ − 2)/α)
η1/α

1F1

(
1− k1− γ − 2

α
; 1+ 1

α
;−η

)
(6.17)

where

1F1(ρ; σ ; η) =
∞∑
n=0

(ρ)n

(σ )n

ηn

n!

is the confluent hypergeometric series. Since1F1(ρ; σ ;−η) andη1−σ
1F1(1+ ρ − σ ; 2−

σ ;−η) are solutions of the confluent hypergeometric equation then the above linear
combination,G2,0

1,2(η), is also a solution of the confluent hypergeometric equation.
For the daughter distribution of degreep, if 1/α is not an integer, by summing over

p + 1 sequences of residues instead of two, one finds that theG-function is given by

G
p+1,0
p,p+1

(
kp − γ − 1

α
; 0, p

α
; η
)
=

p∑
j=0

∏p

i=0,i 6=j 0((i/α)− (j/α))ηj/α∏p

i=10((ki − γ − 1)/α − (j/α))

×pFp
(

1+ j

α
− k1− γ − 1

α
, . . . . ,1+ j

α
− kp − γ − 1

α
;

1+ j

α
− 1

α
, . . . ,1+ j

α
− j − 1

α
, ∗, 1+ j

α
− j + 1

α
, . . . ,1+ j

α
− p
α
;−η

)
(6.18)

where the∗ notation means that this term is omitted from the product of Pochhammer
factorials. The solutionφ̄(η) of the reduced equation is given by (6.13) withGp+1,0

p,p+1(η)

given by (6.18).

6.5. Integral representations ofGp+1,0
p,p+1(η)

In the definition (6.15) of theG-function we express the product of gamma functions in
terms of beta functions as

[0(k′ + (1/α))0(k′ + (2/α)) · · ·0(k′ + (p/α))][0(k′ + (k1− γ − 1)/α)

×0(k′ + (k2− γ − 1)/α) · · ·0(k′ + (kp − γ − 1)/α)]−1

= [B(k′ + (1/α), (k1− γ − 2)/α)B(k′ + (2/α), (k2− γ − 3)/α) · · ·
· · ·B(k′ + (p/α), (kp − γ − 1− p)/α)][0((k1− γ − 2)/α)

×0((k2− γ − 3)/α) · · ·0((kp − γ − 1− p)/α)]−1. (6.19)

If Re(a) > 0,Re(c) > 0 the beta function is given by

B(a, c) = 0(a)0(c)

0(a + c) =
∫ 1

0
sa−1(1− s)c−1 ds. (6.20)

Substitution of (6.19) into (6.15) yields

G
p+1,0
p,p+1

(
kp − γ − 1

α
; 0, p

α
; η
)

= 1

0((k1− γ − 2)/α)0((k2− γ − 3)/α) · · ·0((kp − γ − 1− p)/α)

× 1

2π i

∫ σ+i∞

σ−i∞
dk′ η−k

′
0(k′)

p∏
j=1

B

(
k′ + j

α
,
kj − γ − 1− j

α

)
.
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Using the integral representation of the beta function, changing the order of the beta function
integrations and the Bromwich path integration and carrying out the path integration yields

G
p+1,0
p,p+1

(
kp − γ − 1

α
; 0, p

α
; η
)

= 1

0((k1− γ − 2)/α)0((k2− γ − 3)/α) · · ·0((kp − γ − 1− p)/α)

×
∫ 1

0

∫ 1

0
· · ·
∫ 1

0
ds1 ds2 · · ·dsp s(1/α)−1

1 (1− s1)((k1−γ−2)/α)−1

×s(2/α)−1
2 (1− s2)((k2−γ−3)/α)−1 · · · s(p/α)−1

p (1− sp)((kp−γ−1−p)/α)−1

× exp

[
− η

(s1s2 · · · sp)
]
. (6.21)

Thus,φ̄(η) is given by (6.13) withGp+1,0
p,p+1((kp − γ − 1)/α; 0, p/α; η) given by (6.21).

We suppose that the zeros ofBk are real although, as we will see, it is possible in a
natural way to have complex zeros. For real zeros ofBk, if

k1 > γ + 2 k2 > γ + 3 · · · kp > γ + 1+ p (6.22)

then one sees by inspection of the integrand in (6.21) that the integral over the hypercube
exists. Furthermore, withGp+1,0

p,p+1((kp − γ − 1)/α; 0, p/α; η) given by (6.21) it is easy to
verify that the moments of (6.13) satisfy the reduced moment equation and the normalization
conditionsµ0 = 1, µ1 = 1. With a generalization that we will show below, (6.13) contains
the similarity solutions that have previously been given forα > 0.

From (6.7) we have

B0 = 1k1k2 · · · kp
(γ + 1)(γ + 2) · · · (γ + 1+ p) . (6.23)

If the conditions on the zeros ofBk given by (6.22) are satisfied the fragment number
satisfies the inequality

Ñ = B0+ 1> 1+ 1

γ + 1
(6.24)

which shows that forγ →−1 a large number of fragments are formed at each fragmentation,
independently of the polynomial factor in the daughter distribution.

6.6. An upper bound onφ

By inspection we see that by settings1s2 · · · sp = 1 in the exponential in (6.21) we obtain
an upper bound on the integrand. Then, fors1s2 · · · sp = 1 the integral is a product of beta
functions and with (6.13) we have

φ̄(η) < Dp(α, γ )
α

β
[B(1/α, (k1− γ − 2)/α)B(2/α, (k1− γ − 3)/α) · · ·

· · ·B(p/α, (k1− γ − 1− p)/α)][0((k1− γ − 2)/α)

×0p((k2− γ − 3− p)/α) · · ·0p((kp − γ − 1− p)/α)]−1ηγ/α exp(−η).
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6.7. Another integral representation

With the change of variabless1 = 1/(1+ u1), s2 = 1/(1+ u2), . . . , sp = 1/(1+ up) in
(6.21) we obtain

G
p+1,0
p,p+1

(
kp − γ − 1

α
; 0, p

α
; η
)

= 1

0((k1− γ − 2)/α)0((k2− γ − 3)/α) · · ·0((kp − γ − 1− p)/α)

×
∫ ∞

0

∫ ∞
0
· · ·
∫ ∞

0
du1 du2 · · ·dup u((k1−γ−2)/α)−1

1 (1+ u1)
−(k1−γ−1)/α

×u((k2−γ−3)/α)−1
2 (1− u2)

−(k2−γ−1)/α · · · u((kp−γ−1−p)/α)−1
p (1+ up)−(kp−γ−1)/α

× exp[−η(1+ u1)(1+ u2) · · · (1+ up)]. (6.25)

We will use (6.25) to derive the large-η expansion of the reduced distribution.
For the linear daughter distribution (6.25) becomes

G
2,0
1,2

(
k1− γ − 1

α
; 0, 1

α
; η
)
= 1

0((k1− γ − 2)/α)

×
∫ ∞

0
du1 u

((k1−γ−2)/α)−1
1 (1+ u1)

−(k1−γ−1)/α exp[−η(1+ u1)]

G
2,0
1,2

(
k1− γ − 1

α
; 0, 1

α
; η
)
= exp(−η)ψ((k1− γ − 2)/α; 1− (1/α); η) (6.26)

where

ψ

(
k1− γ − 2

α
; 1− 1

α
; η
)
= 1

0((k1− γ − 2)/α)

×
∫ ∞

0
du1 u

((k1−γ−2)/α)−1
1 (1+ u1)

−(k1−γ−1)/α exp(−ηu1) (6.27)

sometimes called theψ function, is one of the fundamental solutions of the confluent
hypergeometric equation. A comparison of (6.25) with (6.26) suggests that one may regard
exp(η)Gp+1,0

p,p+1(η) as a generalization of theψ function.

6.8. The small-z limit

As a check on the analysis we confirm that the multiple integral (6.25) satisfies the general
small- and large-z limits given in section 5. By expansion of exp(−zα/βαs1s2 · · · sp) in the
integrand of (6.25) in a Taylor series ats1 = s2 = · · · = sp = 1 one obtains the small-z
limit

lim
z→0

φ(z) = Dp(α, γ ) 0(1/α)0(2/α)2 · · ·0(p/α)
0((k1− γ − 1)/α)0((k2− γ − 1)/α) · · ·0((kp − γ − 1)/α)

×α
β

(
z

β

)γ
(6.28)

which is in agreement with Cheng and Redner’s limit (5.3).
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6.9. The large-z limit

To derive the large-z limit we note that for largez/β the integral (6.15) converges on the
Bromwich path for largek. Thus, for largez we may take the path at large realk and use
the asymptotic expansion for0 functions with large argument. Then, to order 1/k,

0(k)0(k + (1/α)) · · ·0(k + (p/α))
0(k + ((k1− γ − 1)/α))0(k + ((k2− γ − 1)/α)) · · ·0(k + ((kp − γ − 1)/α))

= 0
(
k + δ

α

)
+O

(
1

k

)
(6.29)

where the shift in the argument of the0 function is given by

δ = −(k1− γ − 2)− (k2− γ − 3)− · · · − (kp − γ − 1− p). (6.30)

By expandingBk in powers of 1/k one obtains

Bk= 1

k
− [γ + 1− (k1− γ − 2)− (k2− γ − 3)− · · · − (kp − γ − 1− p)] 1

k2
+O

(
1

k3

)
.

Alternatively, expansion of the integrand in (2.7) in a Taylor series atr = 1 and integration
yields the representation

Bk = 1

k
− [B ′(1)+ 1]

1

k2
+O

(
1

k3

)
whereB(1) = 1 andB ′(1) is the derivative ofB(r) evaluated atr = 1. Comparison of
terms in the two expansions shows that

δ = B ′(1)− γ = −(k1− γ − 2)− (k2− γ − 3)− · · · − (kp − γ − 1− p). (6.31)

With (6.15), (6.29)–(6.31) we find that the inverse transform for largezα/βα is

φ(z) = Dp(α, γ )α
β

(
z

β

)B ′(1)
exp

(
− z

α

βα

)[
1+O

(
βα

zα

)]
(6.32)

which is in agreement with (5.5). Because of the constraints onk1, k2, . . . , kp we have
B ′(1) < γ so that (6.32) is consistent with the upper bound onφ.

7. Examples

We now consider examples for some particular daughter distributions. We start with the
simplest.

7.1. The power-law daughter distribution

For p = 0 in (6.4) we haveb(r) = b0r
γ . The similarity solution for this case is well

known and has been given by Fillipov [1] and Peterson [10]. Nevertheless we consider the
solution again in order to comment on the existence, point out its properties and place it in
the context of the more general solutions. From (6.5) we see thatB(1) = b0/(γ + 2) and
therefore ifb0 = γ + 2 the volume is constant. According to (6.6),B0 = 1/(γ + 1) and
thus if−1< γ 6 0 the fragmentation is binary or larger. Then from (6.13) and (6.15) with
p = 0 we have

φ̄(η) = α

0((γ + 1)/α)β
ηγ/α

1

2π i

∫ σ+i∞

σ−i∞
dk η−k0(k).
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The inverse Mellin transform is

φ̄(η) = 1

0((γ + 1)/α)

α

β
ηγ/α exp(−η) (7.1)

where

β = 0((γ + 1)/α)

0((γ + 2)/α)
Ñ = γ + 2

γ + 1
B ′(1) = γ.

This is the form of the solution derived by Peterson [10]. The solution (7.1) is in agreement
with the general results for the small- and large-z limits given by (5.3) and (5.5). Ifα > 0
the normalizing conditionsµ0 = 1 andµ1 = 1 are satisfied and the reduced moments of
degreek > 0 are finite and satisfy the reduced moment equation.

With (3.10), (4.3) and (7.1) we have the full similarity solution

n∗(x, t) = N2
0

V

α

0((γ + 1)/α)β

(
x̄

β

)γ
(1+ βας)(γ+2)/α exp

[
− x̄

α

βα
(1+ βας)

]
(7.2)

wherex̄ = x/ν is the dimensionless particle volume. We see that the solution depends on
the two fragmentation parametersα, γ , the rate constant̃cα (contained inς ) and the initial
mean volumeν.

The solution (7.2) is a one-parameter family of solutions with the initial mean volumeν

as parameter. Because of the linearity of the fragmentation equation one can add these
solutions to form new solutions. That is essentially how Ziff and McGrady [8] have
constructed the general solution of the initial value problem for the power-law daughter
distribution.

Expanding (7.2) in powers of(βας)−1 we obtain, in terms of the real time,

n∗(x, t) = V α0((γ + 2)/α)

02((γ + 1)/α)
xγ exp

(
− xα

βανα

)
(c̃αt)

(γ+2)/α

× exp(−c̃αxαt)
[

1+
(
γ + 2

αβαc̃ανα

)
t−1+O(t−2)

]
. (7.3)

We see that the time constant to approach the long-time limit isτ ∗ = (2+ γ )/(αβαc̃ανα).
Furthermore, asγ → −1 the fragment number andβ diverge and thus the above time
constant and also the time constant for the moments,τ ∗k = |k − 1|/(αβαc̃ανα), approach
zero. As a consequence of the fragment number diverging the particle distribution,n∗(x, t),
becomes singular atx = 0. On the other hand, it is evident that ifαc̃ανα is small enough
the characteristic time can be long even ifβ is large, where we recall thatc̃ανα is the initial
average fragmentation frequency.

Referring to (7.1) one sees that ifα < 0 the solution is singular and physically
unacceptable. Ifα = 0 the solution of (5.2) isφ(z) = constantzγ−1/B0, which is also
singular and thus we do not have a similarity solution forα 6 0. A similar argument holds
for the general polynomial daughter distribution and we conclude that a physical solution
of the reduced equation does not exist forα 6 0, as has been noted by other investigators
[1, 2, 9, 11].

It is perhaps of interest to compare Peterson’s solution with the solutions forα < 0,
which are not similarity solutions, that have been constructed by Fillipov [1] and McGrady
and Ziff [2]. Their solutions, called shattering solutions, show an infinite number of zero-
volume (mass) particles created very rapidly with a loss in the total volume of particles.
Shattering fragmentation is a cascading process that even for binary fragmentation can very
rapidly produce a large number of small particles.
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For Peterson’s solution, where−1 < γ 6 0, if γ → −1, a large number of smaller
particles are created at each fragmentation event without a change of volume, which suggests
some sort of explosive process. Even though the fragmentation rate may be slow, ifγ →−1
the characteristic time for the increase of particle number can be small, in contrast to the
cascading shattering-fragmentation process where the characteristic time is small because
the rate of fragmentation is large.

7.2. The linear daughter distribution

Next we consider the daughter distribution with the linear polynomial factor,

b(r) = rγ (b0+ b1r) (7.4)

which, as will be discussed below, is a special case of a daughter distribution considered
by Ziff and McGrady [9] and Ziff [13]. Forp = 1 there is one zero in theB-moments at
k = −k1 and theb-coefficients are given by

b0 = (2+ γ )(k1− γ − 1) b1 = −(3+ γ )(k1− γ − 2). (7.5)

From (6.13) withp = 1 and (6.26) we see that the integral form of the solution for the
reduced distribution is given by

φ̄(η) = 0(k1/α)

0((γ + 1)/α)0((γ + 2)/α)

α

β
ηγ/α exp(−η)ψ

(
k1− γ − 2

α
; 1− 1

α
; η
)
,

β = 0((γ + 1)/α)0((k1+ 1)/α)

0((γ + 3)/α)0(k1/α)
Ñ = 1+ k1

(γ + 1)(γ + 2)

B ′(1) = γ − (k1− γ − 2) k1 > γ + 2 k1 > (γ + 1)(γ + 2) (7.6)

whereψ(η) is given by (6.27). It is easy to check that the normalization ofµ0 andµ1 are
satisfied and that the higher moments satisfy (6.11). If one wants the daughter-fragment
number to be a positive integer then one should havek1 = B0(1+ γ )(2+ γ ), whereB0

is a positive integer. For example, the fragmentation is binary ifk1 = (1+ γ )(2+ γ ),
γ > 0, ternary ifk1 = 2(1+ γ )(2+ γ ), 2(1+ γ ) > 1 and so on. The singular behaviour
for γ → −1, where the fragment number becomes large andτ ∗ andτ ∗k become small is a
general feature and thus also occurs for the linearb(r).

7.2.1. The small-η expansion. As shown, for example, by Luke [26] or Slater [28], if
(α − 1)/α is not a negative integer or zero, then the small-η expansion ofψ is

ψ

(
k1− γ − 1

α
; 1− 1

α
; η
)
= 0(1/α)

0((k1− γ − 1)/α)
1F1

(
k1− γ − 2

α
; 1− 1

α
;−η

)
+ 0(−1/α)

0((k1− γ − 2)/α)
η1/α

1F1

(
k1− γ − 1

α
; 1+ 1

α
;−η

)
. (7.7)

Then, with the aid of the Kummer transformation,1F1(ρ; σ ; η) = exp(η) 1F1(σ−ρ; σ ;−η),
we obtain the expansion for̄φ(η) in powers of(−η) as

φ̄(η) = 0(k1/α)

0((γ + 1)/α)0((γ + 2)/α)

α

β
ηγ/α

×
[

0(1/α)

0((k1− γ − 1)/α)
1F1

(
1− k1− γ − 1

α
; 1− 1

α
;−η

)
+ 0(−1/α)

0((k1− γ − 2)/α)
η1/α

1F1

(
1− k1− γ − 2

α
; 1+ 1

α
;−η

)]
(7.8)
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which is in agreement with the representation (6.17) of theG-function that was obtained by
the residue calculation. The small-η limit of (7.8) is in agreement with the general result
given by (6.28). The small-η expansion when(α − 1)/α is zero or a negative integer may
be found in Luke [26].

7.2.2. The large-η expansion. To obtain the large-η expansion we expand(1 +
u)−((k1−γ−1)/α) in the integrand of (6.27) in a power series inu. After the change of
variableξ = ηu we obtain

ψ

(
k1− γ − 2

α
; 1− 1

α
; η
)
= η−((k1−γ−2)/α)

0((k1− γ − 2)/α)

∫ ∞
0

dξ ξ ((k1−γ−2)/α)−1

× exp(−ξ)
(

1− ((k1− γ − 1)/α)ξ

1!
η−1

+ · · · + (−1)n((k1− γ − 1)/α)nξ

n!
η−n + · · ·

)
.

Integrating term by term gives

ψ

(
k1− γ − 2

α
; 1− 1

α
; η
)
∼ η−(k1−γ−2)/α

2F0

(
k1− γ − 2

α
,
k1− γ − 1

α
;−η−1

)
(7.9)

which is the well known analytic continuation ofψ(η) to largeη. Thus, with (7.6) and
(7.9) we obtain the large-η expansion,

φ̄(η) ∼ 0(k1/α)

0((γ + 1)/α)0((γ + 2)/α)

α

β
ηB
′(1)/α

× exp(−η) 2F0

(
k1− γ − 2

α
,
k1− γ − 1

α
;−η−1

)
. (7.10)

Since there are two numerator parameters and no denominator parameter the2F0

hypergeometric series diverges for allη; however, it converges asymptotically. The error
incurred when the series is truncated atn terms has been derived by Luke [26]. With (3.10),
(4.3) and (7.10) the asymptotic expansion of the full similarity solution is

n∗(x, t) ∼ N2
0

V

0(k1/α)

0((γ + 1)/α)0((γ + 2)/α)

α

β

(
x̄

β

)B ′(1)
(1+ βας)(B ′(1)+2)/α

× exp

[
− x̄

α

βα
(1+ βας)

]
2F0

(
k1− γ − 2

α
,
k1− γ − 1

α
;− βα

x̄α(1+ βας)
)

(7.11)

where we recall thatς = c̃αναt .
To consider a special case we takek1 = γ + 2+ α in the argument ofψ((k1 − γ −

2)/α; 1− (1/α); η). Then, letk1 = B0(γ + 1)(γ + 2) which givesÑ = B0 + 1 fragments
and determinesγ as a function ofB0. Now the reduced distribution is given by

φ̄(η) = (γ + 2)

0((γ + 1)/α)β
ηγ/α exp(−η)ψ

(
1; 1− 1

α
; η
)

β = 0((γ + 1)/α)(γ + 3)

0((γ + 2)/α)(γ + 2)
γ = −3

2
+ 1

2B0
+ 1

2

√
1+ 2(1+ 2α)

B0
+ 1

B2
0

k1 = B0(γ + 1)(γ + 2) (7.12)

where we regardB0 andα as independent parameters.
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For B0 = 1 we have binary fragmentation andγ = −1+√1+ α for arbitrary positive
α. Then, for example, ifα = 5

4 we haveγ = 1
2, k1 = 15

4 . If α = 3 we haveγ = 1,
k1 = 6 and (7.12) reduces to a similarity solution for binary fragmentation given by Ziff
and McGrady [9].

For B0 = 2 we have ternary fragmentation andγ = − 5
4 + ( 1

4)
√

9+ 8α. Then, for
example, ifα = 7

8, we haveγ = − 1
4, k1 = 21

8 . If α = 2, thenγ = 0, k1 = 4. If α = 27
8 ,

thenγ = 1
4, k1 = 45

8 . The solution (7.12) forB0 = 2, α = 2 has been given by Ziff and
McGrady [9].

7.3. Ziff’s daughter distribution

Ziff’s daughter distribution [13] may be written in the form

b(r) = rγ (b0+ bqrq) (7.13)

whereq is not necessarily an integer and there is no loss of generality if we suppose that
q > 0. Regardingk1 and q as independent parameters, theb-coefficients are determined
by

b0 = 1

q
(2+ γ )(k1− γ − 1)

bq = −1

q
(2+ q + γ )(k1− γ − 1− q). (7.14)

When the daughter distribution is given by (7.13), after some obvious changes in
(6.11) the Mellin transform solution given in section 6 applies. Now the zero
of the B-moments must satisfyk1 > γ + 1 + q and, instead of (7.6), we
have

φ̄(η) = 0(k1/α)

0((γ + 1)/α)0((γ + 1+ q)/α)
α

β
ηγ/α exp(−η)ψ

(
k1− γ − 1− q

α
; 1− q

α
; η
)

β = 0((γ + 1)/α)0((k1+ 1)/α)

0((γ + 2+ q)/α)0(k1/α)
Ñ = 1+ k1

(γ + 1)(γ + 1+ q)
B ′(1) = γ − (k1− γ − 1− q) k1 > γ + 1+ q k1 > (γ + 1)(γ + 1+ q).

(7.15)

The small- and large-η expansions and the long-time asymptotic expansion for
n∗(x, t) follow in the same way as they did above for the linear case. If
q = 1 we recover (7.6) and the subsidiary conditions, so it is clear that
(7.15) contains the solutions that we showed above for the linear daughter
distribution.

To have finiteÑ we must haveγ > −1 and to have two or more fragments per event we
must havek1 > (γ + 1)(γ + 1+ q). To obtain the solution for an arbitrary integer number
of daughter fragments one takesk1 = B0(γ + 1)(γ + 1+ q), B0 = 1, 2, 3, . . . , (Ñ − 1) in
the argument ofψ in (7.15).

The solution (7.15) is simplified if the zero inBk is at k1 = γ + 1+ q + α. Then for
arbitraryα > 0 andγ > −1,

φ̄(η) = (γ + 1+ q)
0((γ + 1)/α)β

ηγ/α exp(−η)ψ
(

1; 1− q
α
; η
)

(7.16)

where

β = 0((γ + 1)/α)(γ + 2+ q)
0((γ + 1+ q)/α)(γ + 1+ q) Ñ = 1+ (γ + 1+ q + α)

(γ + 1)(γ + 2)
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which is a similarity solution given by Ziff [13].
As noted by Ziff, the generality introduced by the daughter distribution (7.13) (or (7.4))

removes the restrictionγ 6 0 present in Peterson’s solution and large values ofγ are thus
allowed. The solution for largeγ is possibly of interest since a large value ofγ has the
effect of a smooth, small-r cut-off in the daughter distribution. By inspection of (7.10) and
(7.12) one can see the effect that such a cut-off would have on the large- and small-z tails of
the similarity distribution. In this connection we note that Cheng and Redner [11, 12] have
considered the effect on the particle distribution of a sharp, small-r cut-off in the daughter
distribution for a general fragmentation kernel and Huanget al [29] have considered a sharp
small particle cut-off for a power-law daughter distribution in a linear fragmentation theory
that allows mass (or volume) change.

7.4. The quadratic daughter distribution

As a final example we show the reduced distribution for a quadratic polynomial factor in
the daughter distribution. In this case we have

b(r) = rγ (b0+ b1r + b2r
2)

where there are two zeros of theB-moments. From the conservation of volume (6.5) and
equations (6.6) and (6.7) for theB-moments, it follows that

b′0+ b′1+ b′2 = 1

(2γ + 5)b′0+ (2γ + 4)b′1+ (2γ + 3)b′2 = k1+ k2

(γ + 2)(γ + 3)b′0+ (γ + 1)(γ + 3)b′1+ (γ + 1)(γ + 2)b′2 = k1k2 (7.17)

where

b′0 =
b0

γ + 2
b′1 =

b1

γ + 3
b′2 =

b1

γ + 4
.

The solution of (7.17) is given by

b′0 = 1
2(k1− γ − 1)(k2− γ − 1)

b′1 = −(k1− γ − 2)(k2− γ − 2)

b′2 = 1
2(k1− γ − 3)(k2− γ − 3) (7.18)

where, since the determinant of the matrix of coefficients in (7.17) does not vanish, the
solution is unique. One can see that complex conjugate zerosk1, k2 = k∗1 will give real
values for theb-coefficients. Thus, one could have complex conjugate zeros and still have
real and positiveB-moments and reduced moments. However, at this point we continue to
consider only real zeros.

According to (6.13), forp = 2, we have

φ̄(η) = 0(k1/α)0(k2/α)

0((γ + 1)/α)0((γ + 2)/α)0((γ + 3)/α)

α

β
ηγ/α

×G3,0
2,3

(
k1− γ − 1

α
,
k2− γ − 1

α
; 0, 1

α
,

2

α
; η
)

β = 0((γ + 1)/α)0(k1/α)0(k2/α)

0((γ + 4)/α)0((1+ k1)/α)0((1+ k2)/α)
Ñ = 1+ k1k2

(γ + 1)(γ + 2)(γ + 3)

B ′(1) = 3γ + 5− k1− k2 (7.19)
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where, according to (6.15),

G
3,0
2,3

(
k1− γ − 1

α
,
k2− γ − 1

α
; 0, 1

α
,

2

α
; η
)

= 1

2π i

∫ σ+i∞

σ−i∞
dk η−k

0(k)0(k + (1/α))0(k + (2/α))
0(k + ((k1− γ − 1)/α))0(k + ((k2− γ − 1)/α))

(7.20)

with σ > 0. We takek1 and k2 as independent real parameters subject to the constraints
that k1 > γ + 2, k1 6= γ + 3 andk2 > γ + 3, where we have the freedom to takeγ large.
It is evident that ifk1k2 > (γ + 1)(γ + 2)(γ + 3) the fragmentation is binary or greater.

7.4.1. The small-η expansion. If 1/α is not an integer there are simple poles of the0-
functions at
k + γ + 1

α
= −n k + γ + 2

α
= −n k + γ + 3

α
= −n n = 0, 1, 2, . . . .

Summing over the residues in (7.20) we obtain

φ̄(η) = 0(k1/α)0(k2/α)

0((γ + 1)/α)0((γ + 2)/α)0((γ + 3)/α)

α

β
ηγ/α

×
[

0(1/α)0(2/α)

0((k1− γ − 1)/α)0((k2− γ − 1)/α)
2F2

×
(

1− k1− γ − 1

α
, 1− k2− γ − 1

α
; 1− 1

α
, 1− 2

α
;−η

)
+ 0(−1/α)0(1/α)

0((k1− γ − 2)/α)0((k2− γ − 2)/α)
η1/α

2F2

×
(

1− k1− γ − 2

α
, 1− k2− γ − 2

α
; 1+ 1

α
, 1− 1

α
;−η

)
+ 0(−2/α)0(−1/α)

0((k1− γ − 3)/α)0((k2− γ − 3)/α)
η2/α

× 2F2

(
1− k1− γ − 3

α
, 1− k2− γ − 3

α
; 1+ 2

α
, 1+ 1

α
;−η

)]
. (7.21)

7.4.2. The large-η expansion. The large-η expansion forφ̄ is obtained in essentially the
same way that we did for the expansion of the linear daughter distribution. That is, we start
with the integral form of the solution (6.25) forp = 2. Then,

φ̄(η) = D2(α, γ )

0(a1)0(a2)

α

β
ηγ/α exp(−η)

∫ ∞
0

∫ ∞
0

du1 du2 u
a1−1
1 exp(−ηu1)u

a2−1
2

× exp(−ηu2)[(1+ u1)
c1−a1−1(1+ u2)

c2−a2−1 exp(−ηu1u2)] (7.22)

where

a1 = k1− γ − 2

α
a2 = k2− γ − 3

α
c1 = 1− 1

α
c2 = 1− 2

α
. (7.23)

Expanding the function in square brackets in powers ofu1 and u2, and changing to the
variablesξ1 = ηu1 andξ2 = ηu2 we obtain, to first order inη−1,

φ̄(η) = D2(α, γ )

0(a1)0(a2)

α

β
η(γ−a1−a2)/α exp(−η)

∫ ∞
0

∫ ∞
0

dξ1 dξ2 ξ
a1−1
1 exp(−ξ1)ξ

a2−1
2

× exp(−ξ2){1+ [(c1− a1+ 1)ξ1+ (c2− a2+ 1)ξ2+ ξ1ξ2]η−1+ · · ·}.
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Integrating, factoring out0(a1)0(a2) and substitution of (7.23) yields

φ̄(ηj) ∼ 0(k1/α)0(k2/α)

0((γ + 1)/α)0((γ + 2)/α)0((γ + 3)/α)

α

β
ηB
′(1)/α

× exp(−η)
{

1−
[(

k1− γ − 1

α

)(
k1− γ − 2

α

)
+
(
k2− γ − 1

α

)(
k2− γ − 3

α

)
+
(
k1− γ − 2

α

)(
k2− γ − 3

α

)]
η−1+ · · ·

}
(7.24)

whereB ′ = γ − (k1 − γ − 2)− (k2 − γ − 3). We see that (7.24) is in agreement with the
general limit given by (6.32). In the same way one can derive the large-η expansion to first
or higher order inη−1 for the solution for thep-degree daughter-fragment distribution.

7.4.3. Complex zeros.As an example of a quadratic daughter distribution where it is
possible to have complex conjugate zeros of theB-moments and still have a real daughter
distribution, we consider the fragmentation equation in the special form

∂n(x, t)

∂t
= −

∫ x

0
f (y, x − y) dy n(x, t)+ 2

∫ ∞
x

f (x, y − x)n(y, t)dy (7.25)

wheref (x, y) = C̃α(xy)
(a−1)/2 is the product form of kernel and̃Cα is a constant with

dimensions(xαt)−1. It is easy to show that if a fragmentation kernel is a homogeneous
function of x and y and is symmetric inx and y, which are properties of the product
kernel, then the solutions of (7.25) conserve the total particle volume and the fragmentation
is binary.

Substituting the product kernel into (7.25) we obtain the fragmentation equation in the
form (2.1), where

c̃α =
∫ 1

0
f (r, 1− r) dr = C̃αB

(
α + 1

2
,
α + 1

2

)
and B((α + 1)/2, (α + 1)/2) is the beta function and the daughter distribution is

b(r) = 2

B((α + 1)/2, (α + 1)/2)
r(α−1)/2(1− r)(α−1)/2. (7.26)

If α = 1, 3, 5, . . ., thenb(r) is in the polynomial class considered here.
For α = 1 we haveb(r) = 2, which is theγ = 0, Ñ = 2 case of Peterson’s solution.

For α = 3, we have B((α + 1)/2, (α + 1)/2) = 1/3! andb(r) = 12r(1− r), which is the
linear case considered above withγ = 1, k1 = 6 where the solution is given by (7.6).

For α = 5 we have the quadratic daughter distribution

b(r) = 60r2(1− r)2

where γ = 2 andBk = (k + k1)(k + k∗1)/[(k + 3)(k + 4)(k + 5)]. The zeros are at
k1 = (13/2)+ (i√71/2) andk∗1 = (13/2)− (i√71/2). We have Re(k1) = Re(k2) > 3+ γ
so the condition necessary for the use of the beta functions in the integral form of the
solution (6.21) is satisfied. The fragment number is

Ñ = 1+ k1k
∗
1/[γ + 1)(γ + 2)(γ + 3)] = 2

as it should be.
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As another example where complex zeros arise consider the polynomial distribution
b(r) = 2(2n + 1)(1− 2r)2n [10], which has been proposed in an application to fly ash
fragmentation. Forn = 1 we haveb(r) = 6(1− 2r)2 which givesB(1) = 1 and thus
volume is conserved. TheB-moments are given by

Bk = (k + k1)(k + k∗1)
(k + 1)(k + 2)(k + 3)

and they are positive. The zeros are atk1 = (1/2)+ (i
√

23/2) andk∗1 = (1/2)− (i
√

23/2)
and one can check thatB0 = 1 so the fragmentation is binary. However, Re(k1) = Re(k2) <

3+γ so in this case the condition necessary for the use of the beta functions is not satisfied.
This is not to say that there are no solutions of the fragmentation equation for the above
daughter distribution only that the solution is not given by the formalism presented here.

7.4.4. Discussion. We have constructed an exact similarity solution of the fragmentation
equation for a daughter distribution that is a power times a polynomial function of the
fragment volume of degreep, wherep = 0, 1, 2, . . .. The solution forms a one-parameter
family of similarity solutions with the initial mean volume as the parameter. Although
the members of this family could be added to form more general solutions it does not
seem that such a superposition would lead to a general solution except for the special
case of the power-law distribution. The solution for the monodisperse initial distribution
is more fundamental than the similarity solution in the sense that one can construct the
general solution by superposition of such solutions. In fact, solutions for the monodisperse
initial distribution for the power-law daughter distribution have been constructed by Ziff
and McGrady [8] and Huanget al [5]. Ziff [13] has also constructed a solution for the
monodisperse initial distribution for the volume-conserving daughter distribution

b(r) = (γ + 2)(γ + 2+ q)
q

rγ (1− rq)

whereq = α − γ − 2. The construction of this solution was based on a correspondence
with the similarity solution for the same daughter distribution. Perhaps the solution for
the monodisperse initial distribution for the polynomial daughter distribution can also be
constructed by making use of a correspondence with the similarity solution.

For largep it seems that one should be able to approximate a large class of continuous
distributions by the polynomial daughter distribution that are consistent with the constraints
that we have identified. However, we have not investigated whether this generality would
be useful in constructing solutions of physical or mathematical interest.

Redner [30] in a review paper has discussed the comparison of predictions of the linear
theory considered here with measurements of particle size distributions and has pointed out
some supporting data and also a number of limitations of the theory. We refer to that paper
for a broad discussion of the fragmentation problem. However, we do remark, that, as
is generally recognized, since the behaviour of the tails of the similarity distributions are
especially simple and since for long-times all initial distributions are supposed to tend to the
same limiting distribution, measurement of the long-time behaviour of the tails of a particle
distribution provides a simple point at which to test the applicability of the theory. Another
simple prediction of the theory is the universal behaviour of the moments given here by
(4.6)–(4.9). The long-time behaviour of the moments follows only from the assumptions of
the linearity of the fragmentation equation and the homogeneity of the fragmentation terms.
Thus, measurement of the moments of the distribution would also be a good way to test
the basic assumptions of the theory.
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